Programação do sistema de comércio


Programação do sistema de comércio
Se você é um comerciante ou um investidor e gostaria de adquirir um conjunto de habilidades de negociação quantitativa, você está no lugar certo.
O curso de Negociação com o Python fornecerá as melhores ferramentas e práticas para pesquisa de negociação quantitativa, incluindo funções e scripts escritos por especialistas em negociações quantitativas. O curso dá o máximo impacto ao seu tempo e dinheiro investidos. Centra-se na aplicação prática da programação à negociação, em vez da informática teórica. O curso se pagará rapidamente economizando seu tempo no processamento manual de dados. Você passará mais tempo pesquisando sua estratégia e implementando negociações lucrativas.
Visão geral do curso.
Parte 1: Noções básicas Você aprenderá por que o Python é uma ferramenta ideal para negociações quantitativas. Começaremos configurando um ambiente de desenvolvimento e, em seguida, apresentaremos as bibliotecas científicas.
Parte 2: Manipulando os dados Aprenda como obter dados de várias fontes gratuitas como Yahoo Finance, CBOE e outros sites. Leia e escreva vários formatos de dados, incluindo arquivos CSV e Excel.
Parte 3: Pesquisando estratégias Aprenda a calcular P & L e acompanhar as métricas de desempenho como Sharpe e Drawdown. Construa uma estratégia de negociação e otimize seu desempenho. Vários exemplos de estratégias são discutidos nesta parte.
Parte 4: Indo ao vivo! Esta parte é centralizada em torno da API Interactive Brokers. Você aprenderá como obter dados de estoque em tempo real e fazer pedidos ao vivo.
Muito código de exemplo.
O material do curso consiste em 'cadernos' que contêm texto juntamente com código interativo como este. Você poderá aprender interagindo com o código e modificando-o ao seu gosto. Será um ótimo ponto de partida para escrever suas próprias estratégias.
Embora alguns tópicos sejam explicados detalhadamente para ajudá-lo a entender os conceitos subjacentes, na maioria dos casos você não precisará escrever seu próprio código de baixo nível, devido ao suporte de bibliotecas de código aberto existentes:
A biblioteca TradingWithPython combina grande parte da funcionalidade discutida neste curso como uma função pronta para uso e será usada durante todo o curso. Os pandas fornecerão a você todo o poder de levantamento pesado necessário para a compactação de dados.
Todo o código é fornecido sob a licença BSD, permitindo seu uso em aplicações comerciais.
Classificação do curso.
Um piloto do curso foi realizado na primavera de 2013, isso é o que os alunos puderam dizer:
Matej curso bem planejado e bom treinador. Definitivamente vale seu preço e meu tempo Lave Jev obviamente sabia suas coisas. A profundidade da cobertura foi perfeita. Se Jev executar algo assim novamente, eu serei o primeiro a me inscrever. John Phillips Seu curso realmente me fez começar a considerar o python para análise de sistemas de estoque.

Como fazer um robô comercial em nenhum momento.
Para fazer um robô comercial, você precisa de um sistema de negociação.
Negociar nos mercados financeiros envolve muitos riscos, incluindo o mais crítico - o risco de tomar uma decisão comercial errada. O sonho de todo comerciante é encontrar um robô comercial, que está sempre em boa forma e não sujeito a fraquezas humanas - medo, ganância e impaciência.
Cada recém-chegado quer obter ou criar um sistema de negociação claro e estrito que possa ser apresentado na forma de algoritmos e se livrar completamente das operações de rotina. É possível?
Um sistema de negociação é uma condição necessária para entrar no mercado e esse sistema deve ser lucrativo, é claro. Quando os recém-chegados chegam ao mercado, geralmente ficam sobrecarregados pela grande massa de informações difíceis de entender. Os fóruns de livros e traders podem fornecer alguma ajuda nesse caso.
Infelizmente, nem todos os autores são comerciantes bem-sucedidos e nem todos os traders bem-sucedidos escrevem livros. Muitos recursos especiais da Web são criados apenas para gerar lucro para seus proprietários, pois é muito mais difícil negociar seu próprio dinheiro do que emitir previsões e ensinar sistemas de negociação.
Cada comerciante deve passar de forma independente todos os estágios da criação de um sistema de negociação. Há um ditado popular que não importa qual sistema você usa para negociação, o principal é que você deve realmente negociar de acordo com esse sistema. Caso contrário, a negociação no mercado se transforma em uma aposta com um resultado previsível.
Negociação de robôs e Forex.
Acredita-se que o mercado Forex tenha uma grande liquidez. Além disso, permite negociar 24 horas por dia, ao contrário de muitos outros mercados. Portanto, muitos comerciantes tentam fazer robôs de negociação especialmente para o mercado Forex, uma vez que oferece um grande número de instrumentos de negociação.
No entanto, os céticos afirmam que todos os pares de moedas estão fortemente correlacionados entre si, proporcionando uma volatilidade muito baixa no mercado. Mas seus oponentes respondem que cada par de moedas tem suas próprias características e que a baixa volatilidade é compensada por uma grande alavancagem.
Em qualquer caso, os instrumentos de Forex são atraentes para a criação de robôs de negociação e a maioria dos defensores do comércio automatizado aprimora suas habilidades em pares de moedas.
Os terminais de negociação MetaTrader 4 e MetaTrader 5 são especialmente projetados para desenvolver facilmente sistemas de negociação automatizados, mas ao mesmo tempo sua interface também é conveniente para negociação manual.
Como começar a fazer um robô comercial?
Existem muitas abordagens para construir um sistema de negociação automatizado. Vamos descrever apenas alguns dos principais.
A primeira abordagem baseia-se em matemática. Um desenvolvedor tenta criar uma espécie de equação que considere muitos fatores. Essa abordagem baseia-se na firme crença de que os movimentos de preços são gerenciados por um modelo que pode ser encontrado usando dados históricos disponíveis.
Na maioria dos casos, os seguidores de tal abordagem sabem muito de matemática, mas não sabem nada sobre / não estão interessados ​​no mercado. O mercado é uma abstração pura, um tipo de jogo intelectual para eles. Essa abordagem geralmente leva a muitos anos de estudo e desenvolvimento, enquanto um resultado definido na forma de um sistema de negociação automatizado em funcionamento não é tão importante.
A segunda abordagem é baseada no estudo das leis de mercado. Nenhuma tentativa é feita para entender por que o preço sobe ou desce quando vários números de análise técnica aparecem em um gráfico. A vantagem dessa abordagem é que ela não requer nenhum conhecimento especial de matemática e não faz suposições sobre a força motriz do mercado.
É mais claro e conveniente quando se estuda negociação. É mais popular entre os comerciantes que receberam reconhecimento universal. A desvantagem da abordagem é a necessidade de rastrear constantemente todos os símbolos necessários.
Mais cedo ou mais tarde, um trader começa a considerar a automação de processos de negociação e a questão mais considerável aparece nesse estágio - a complexidade de formalizar regras de negociação ao tentar expressá-las na forma de algoritmos. Em alguns casos, os operadores que tentam encomendar um robô comercial não podem descrever as regras de negociação e encontrar pontos em comum com os programadores.
A terceira abordagem é baseada na tentativa de criar uma “caixa preta” baseada em redes neurais com o uso de ferramentas prontas amplamente disponíveis em softwares especiais e pacotes de matemática. A criação de um sistema de negociação automatizado com os elementos da inteligência artificial é uma tarefa empolgante e desafiadora, mesmo para os recém-chegados, já que não requer conhecimento profundo em matemática nem experiência em programação - tudo é feito usando recursos visuais.
Um trader deve conhecer os fundamentos dos indicadores técnicos, possuir a capacidade de preparar dados de preço necessários e experiência em algum pacote definido para trabalhar com redes neurais. A principal desvantagem dessa abordagem é que um robô de negociação obtido usando essas ferramentas especializadas para trabalhar com redes neurais é, na verdade, uma "caixa preta". Os comerciantes não conhecem seus princípios de funcionamento e, geralmente, é impossível prever qual fase do mercado será a mais problemática para o robô.
Os programadores geralmente escolhem a quarta abordagem - eles começam a fazer um robô de negociação desde o começo sem gastar tempo para negociação manual. Por que negociar manualmente? Você pode fazer um robô passar alguns meses e colher os benefícios de seus esforços.
Mas «sem dores, sem ganhos». Na maioria dos casos, os programadores começam a criar toda a infraestrutura necessária usando uma linguagem de programação familiar, em vez de apenas fazer um robô comercial - obter e processar dados de preços, representação visual de gráficos e indicadores, meios personalizados de testar estratégias em dados históricos e assim por diante.
Eles ganham muita experiência no processo. Mas na maioria dos casos, essa experiência não os aproxima do objetivo final - a criação de um sistema de negociação automatizado. E mesmo que um robô comercial seja criado, não há garantias de que ele será lucrativo. E se um programador quiser escrever outro sistema de negociação? Reestruturação profunda e novos erros de programação são inevitáveis.
Há também a quinta abordagem - comprar um sistema de negociação pronto na forma de um robô comercial. Neste caso, um comerciante atua como um operador ou um sintonizador. Essa abordagem economiza muito tempo (não é necessário aprender muitas coisas novas) e permite que os operadores entrem rapidamente no mundo da negociação automatizada.
A principal desvantagem dessa abordagem reside em suas vantagens - você não conhece os princípios de operação de seu robô de negociação e sua estrutura. E mesmo que um vendedor forneça uma descrição detalhada do sistema de negociação implementado, você nunca terá certeza disso.
No entanto, nenhuma das abordagens mencionadas pode lhe dar garantia absoluta, exceto um depósito bancário. Mas essa não é uma solução muito adequada para pessoas interessadas em negociar no mercado e maneiras de aumentar seus ativos privados.
Qual é a melhor abordagem para o comércio automatizado para um comerciante?
Cada uma das cinco abordagens descritas tem suas vantagens e corresponde a algum tipo definido de comerciante. É improvável que você escolha a primeira abordagem (descrição analítica do mercado) sem um bom histórico matemático. É igualmente improvável que você comece a fazer robôs comerciais baseados em redes neurais. No entanto, essas duas abordagens são muito estimulantes e proporcionam um bom exercício intelectual.
Abaixo, discutiremos apenas a segunda abordagem, que já é considerada a clássica. Essa é a abordagem geralmente escolhida pelos novos seguidores da negociação automatizada, já que a análise técnica continua sendo a principal área de conhecimento ao aprender noções básicas de negociação.
Outra vantagem da segunda abordagem é que depois de gastar algum tempo para negociação manual e obter o senso de mercado, você já terá uma boa compreensão das ferramentas de análise técnica. Além disso, você poderá programar estratégias de negociação ou criar redes neurais em um nível superior.
Os primeiros passos para fazer um robô comercial.
Para criar um sistema de negociação automatizado, você precisa de habilidades de programação e conhecimento de todos os meandros do processamento de solicitações comerciais. Mas primeiro você pode começar com os Expert Advisors já prontos - trocando robôs da biblioteca livre Code Base.
Faça o download de qualquer Expert Advisor (robô de negociação) e lance-o nos terminais de cliente do Strategy Tester do MetaTrader 4 ou MetaTrader 5. Selecione um intervalo de histórico mostrando uma tendência forte e um intervalo com um plano. Execute a otimização de um parâmetro de entrada do Expert Advisor e examine suas diferenças nesses dois intervalos.
Inicie um Expert Advisor com os parâmetros ideais para um plano em um intervalo de tendência e com os parâmetros ideais para uma tendência em um intervalo simples. Examine as diferenças nos resultados de negociação, distribuições de ofertas e outros parâmetros estatísticos. Como resultado, você saberá quanto o comportamento do seu sistema de negociação pode variar quando a situação do mercado mudar.
Seria melhor tentar várias estratégias de negociação padrão usando esse método em diferentes partes da história e vários símbolos. Tal teste impede a instalação de um sistema de negociação para algum intervalo histórico definido e fornece uma melhor compreensão dos sistemas de tendência e de tendência contrária.
O próximo passo seria criar sistemas de negociação mais complexos, baseados na combinação de sinais simples já existentes do MQL5 Wizard set. Você pode testar e desenvolver sua intuição comercial, selecionando sinais ruins de um sistema usando um filtro baseado em outro sistema sem meios de programação.
O principal aqui é não superar demais. Quanto mais parâmetros de entrada um sistema de negociação tiver, mais fácil será o ajuste. Houve muitas discussões sobre as diferenças entre otimização e adaptação. Não há soluções amplamente aceitas aqui. Mas a visualização dos resultados de teste / otimização e seu próprio bom senso podem ajudá-lo.
Aprenda a identificar os parâmetros de entrada mais críticos que afetam seu sistema de negociação de todo o conjunto de dados de entrada. Não preste muita atenção aos parâmetros secundários que levam tempo durante a otimização, mas não afetam a própria lógica do sistema. Lembre-se de que um bom sistema de negociação sempre demonstra um pequeno movimento livre de parâmetros secundários, mas não exibe uma volatilidade dramática no caso de mudanças de mercado insignificantes.
Você pode gastar tanto tempo nesta fase, como desejar, até ter certeza de que pode entender qualquer estratégia de negociação examinando os resultados de teste e otimização. O conhecimento dos pontos fortes e fracos dos sistemas padrão permitirá que você esteja mais bem preparado ao criar seu próprio robô comercial.
Programando um robô de negociação.
Suponha que você tenha aprendido / esteja aprendendo a linguagem de programação MQL4 ou MQL5 e agora você está pronto para escrever seu primeiro Expert Advisor para o terminal do cliente MetaTrader. Vários casos são possíveis aqui.
Primeiro, você pode examinar vários robôs comerciais prontos descritos nos artigos para entender melhor as complexidades de programação.
Segundo, você pode fazer perguntas sobre MQL4munity ou MQL5munity, se tiver algum problema não resolvido. Participantes experientes da comunidade geralmente ajudam os recém-chegados a mostrar sincero interesse pelo assunto.
Terceiro, você pode solicitar a melhoria ou o desenvolvimento de um Expert Advisor ou um indicador no serviço Jobs, caso não seja capaz de criar um programa necessário por conta própria. Mas mesmo que você faça um pedido por meio do serviço freelancer, você deve ter alguma idéia sobre o teste de estratégia para encontrar um idioma comum com um desenvolvedor.
Além disso, o conhecimento básico de uma linguagem de programação permite implementar pequenas correções e alterações no código depois que o trabalho já foi concluído. Afinal de contas, não seria muito conveniente chamar um programador para corrigir todos os pequenos problemas que você encontrar. Seria muito mais fácil e rápido corrigi-lo sozinho.
Não há necessidade de reinventar a roda.
Como encontrar sua própria estratégia de negociação, ou pelo menos em que direção você deve focar sua busca? Todos os comerciantes protegem seus próprios sistemas de negociação, se tiverem um. Todos os recém-chegados querem criar um sistema lucrativo ou obter um sistema pronto. Ao mesmo tempo, qualquer solução obtida parece ser muito simples em comparação com as idéias dos recém-chegados sobre um sistema de comércio genuíno.
Os homens do exército em todo o mundo são propensos a níveis excessivos de sigilo. Há muitas piadas sobre isso, incluindo a seguinte: "O segredo militar não está no que você está estudando, - um oficial diz aos estudantes das escolas militares, - mas no fato de que exatamente você está estudando isso". A situação dos sistemas de negociação é semelhante: a maioria dos traders usa idéias de negociação simples e conhecidas com pequenas modificações, por exemplo, adicionando o Trailing Stop ou confirmações de indicadores de tendência.
Existem muitos fóruns de traders com acesso limitado, onde os participantes unem seus esforços para desenvolver ou melhorar alguns sistemas de negociação secretos. O mais interessante é que tais sistemas não contêm nada de especial. Normalmente, uma idéia bem conhecida (como "comércio com a tendência") é usada como base. Em seguida, ele é aperfeiçoado com alguns novos indicadores desconhecidos do público em geral.
Portanto, você pode facilmente obter códigos-fonte de robôs comerciais e tentar usá-los corretamente com vários símbolos e cronogramas. Outro ditado popular pode ser mencionado aqui: "Você não gosta de gatos? Você só não sabe como cozinhá-los!" É difícil acreditar, mas a probabilidade de você desenvolver algo realmente novo é muito pequena. O principal aqui é criar um sistema usando os ingredientes disponíveis. Não pense que alguns gênios tenham acesso a alguns sistemas secretos dos laboratórios da NASA. Esse é o segredo do Graal.
Apenas alguns poucos conseguirão passar.
Então, por que ninguém usa idéias de negociação, se elas estão literalmente ao alcance da mão? A resposta provavelmente está na psicologia humana. O pessoal de muitos bancos e grandes fundos de investimento inclui comerciantes realizando acordos de acordo com regras estritas e dentro de volumes limitados. Mas, por alguns motivos, apenas alguns traders institucionais deixam suas empresas e começam a negociar usando seu próprio dinheiro.
Acontece que você precisa não apenas de uma estratégia de negociação, mas também da disciplina de ferro para segui-la. Muitos comerciantes descobriram com pesar que eles também têm os mesmos problemas psicológicos descritos nos livros. Depois de perceber que o pior inimigo dos comerciantes são eles mesmos, um recém-chegado começa a pensar em fazer um robô comercial para eliminar um fardo psicológico.
Embora eu me afaste ligeiramente do assunto, devo mencionar os lendários comerciantes de tartarugas que negociaram com sucesso em vários mercados no final do século XX. Leia "Way of the Turtle" e você verá que a coisa mais importante para um trader é uma autodisciplina e não um sistema secreto. Infelizmente, a maioria dos recém-chegados não será capaz de seguir uma estratégia lucrativa, mesmo que seja gratuita.
O problema é que a maioria das estratégias de negociação perfeitamente ajustadas para negociação manual dificilmente pode ser formalizada e transcrita para uma linguagem de programação. As estratégias que podem ser facilmente formalizadas (por exemplo, aquelas que envolvem a intersecção de duas médias móveis) são muito simples e exigem muitos refinamentos e melhorias, para que possam ser usadas na prática. Assim, uma ideia simples é gradualmente complicada por uma abundância de parâmetros externos que impedem um robô de negociação de entradas falsas e erros claramente visíveis para um desenvolvedor. Um problema de otimização de robôs de negociação surge. Esse processo não deve se transformar em uma otimização excessiva e em um intervalo de histórico específico.
Para resolver este problema, o teste direto usando os parâmetros do sistema obtidos foi implementado no terminal MetaTrader 5. Se os resultados dos testes forward não diferirem significativamente daqueles obtidos na seção de otimização, há uma probabilidade de que um robô comercial fique estável o suficiente por algum tempo após seu lançamento em uma conta de negociação. Um intervalo de tempo para a otimização de parâmetros e um valor real de "algum tempo" dependem de um determinado sistema de negociação.
Assim, a otimização de um robô de negociação antes de lançá-lo em uma conta de negociação lembra o desenrolar de um sling - quanto mais cuidadosamente desenrolamos um projétil do sling, mais ele voará e mais precisa será sua trajetória. Um robô de negociação completamente desenvolvido manterá um resultado positivo em uma conta de negociação por um tempo maior do que um robô de negociação obtido como resultado de um ajuste. Podemos dizer que o Graal é uma idéia de trabalho e ajuste correto de parâmetros realizados de tempos em tempos nos momentos de mudanças de condições de mercado.
Isto pode ser ilustrado pelos resultados do Campeonato de Negociação Automatizada, que já existe há muitos anos. Os Expert Advisors enviados por todos os participantes passam por testes automáticos no intervalo de tempo de janeiro até o final de julho. O principal requisito para passar no teste automático é um lucro obtido por oito meses de testes. Mas menos de metade dos robôs de negociação admitidos para o Campeonato continuam lucrativos depois de meses de trabalho autônomo.
Você também pode testar suas habilidades para fazer e ajustar seu robô de negociação para participar do Campeonato e obter os resultados dos testes avançados do seu Expert Advisor. Além disso, a participação é gratuita e os prêmios são impressionantes. Esperamos ver você lá!
Conclusão.
Comerciantes profissionais intraday passam muitas horas sentados em seus computadores e esperando o momento certo para fazer um acordo. Claro, eles não podem estar em boa forma o tempo todo.
A maioria dos comerciantes chega à conclusão de que suas ações violam suas próprias regras de negociação. Nem todos os sistemas de negociação podem ser completamente formalizados, mas mesmo esses sistemas podem, na maioria dos casos, adotar ferramentas adicionais, como indicadores, sistemas analíticos e filtros de sinais falsos.
Nós não fazemos nenhuma recomendação especial aqui sobre o aprendizado de linguagens MQL4 ou MQL5, pois há muitos outros artigos úteis sobre esse assunto. O objetivo deste artigo foi fornecer uma idéia inicial sobre como começar a fazer seu robô comercial para os terminais MetaTrader 4 e MetaTrader 5.
Esperamos que este artigo economize tempo para os recém-chegados e mostre a direção certa na difícil tarefa de desenvolver um sistema de negociação automatizado.
Traduzido do russo por MetaQuotes Software Corp.

Programação do sistema de comércio
Criando um sistema de negociação dentro do Trading System Lab.
O Trading System Lab gerará automaticamente Trading Systems em qualquer mercado em poucos minutos usando um programa de computador muito avançado conhecido como AIMGP (Indução Automática do Código de Máquina com Programação Genética). A criação de um sistema de negociação dentro do Trading System Lab é realizada em 3 etapas fáceis. Primeiro, é executado um pré-processador simples que extrai e pré-processa automaticamente os dados necessários do mercado com o qual deseja trabalhar. A TSL aceita dados CSI, MetaStock, AIQ, TradeStation, Internet grátis, ASCII, TXT, CSV, CompuTrac, DowJones, FutureSource, TeleChart2000v3, TechTools, XML, Binário e Internet Streaming. Em segundo lugar, o Gerador de Sistema de Negociação (GP) é executado por vários minutos, ou mais, para evoluir um novo Sistema de Negociação. Você pode usar seus próprios dados, padrões, indicadores, relacionamentos entre mercados ou dados fundamentais no TSL. Em terceiro lugar, o Trading System evoluído é formatado para produzir novos sinais do Trading System a partir da TradeStation ™ ou de muitas outras plataformas de negociação. O TSL irá escrever automaticamente Easy Language, Java, Assembler, código C, código C # e WealthLab Script Language. O Sistema de Negociação pode então ser negociado manualmente, negociado através de um corretor ou negociado automaticamente. Você pode criar o Sistema de Negociação sozinho ou nós podemos fazer isso por você. Então, você ou seu corretor podem negociar o sistema manualmente ou automaticamente.
O Programa Genético do Trading System Lab contém vários recursos que reduzem a possibilidade de ajuste de curva ou a produção de um Sistema de Negociação que não continua a funcionar no futuro. Primeiro, os Trading Systems evoluídos têm seu tamanho reduzido ao menor tamanho possível através do que é chamado de pressão de parcimônia, a partir do conceito de comprimento de descrição mínima. Assim, o Sistema de Negociação resultante é o mais simples possível e geralmente se acredita que quanto mais simples for o Sistema de Negociação, melhor será o seu desempenho no futuro. Em segundo lugar, a aleatoriedade é introduzida no processo evolutivo, o que reduz a possibilidade de encontrar soluções que sejam localmente, mas não globalmente ótimas. A aleatoriedade é introduzida não apenas nas combinações do material genético usado nos Trading Systems evoluídos, mas também em Parsimony Pressure, Mutation, Crossover e outros parâmetros GP de nível mais alto. O teste Fora da Amostra é realizado enquanto o treinamento está em andamento com as informações estatísticas apresentadas nos testes In Sample e Out of Sample Trading System. Os logs de execução são apresentados ao usuário para os dados Treinamento, Validação e Fora da Amostra. Bem comportado O desempenho fora da amostra pode ser indicativo de que o Sistema de Negociação está evoluindo com características robustas. A deterioração substancial no teste automático Fora da Amostra em comparação com o teste Na Amostra pode implicar que a criação de um Sistema de Negociação robusto está em dúvida ou que o Terminal, ou Conjunto de Entrada, pode precisar ser alterado. Finalmente, o Conjunto de Terminais é cuidadosamente escolhido de forma a não influenciar excessivamente a seleção do material genético inicial em relação a qualquer tendência ou sentimento do mercado em particular.
A TSL não inicia sua execução com um Sistema de Negociação predefinido. Na verdade, apenas o Input Set e uma seleção de modos de entrada de mercado ou modos, para pesquisa e atribuição automática de entrada, são feitos inicialmente. Um padrão ou comportamento indicador que pode ser considerado uma situação de alta pode ser usado, descartado ou invertido dentro do GP. Nenhum padrão ou indicador é pré-atribuído a qualquer viés de movimento de mercado específico. Este é um afastamento radical do desenvolvimento do Trading System gerado manualmente.
Um Sistema de Negociação é um conjunto lógico de instruções que informa ao comerciante quando comprar ou vender um mercado em particular. Estas instruções raramente requerem intervenção de um profissional. Os Sistemas de Negociação podem ser negociados manualmente, observando as instruções de negociação em uma tela de computador, ou podem ser negociados permitindo que o computador entre no mercado automaticamente. Ambos os métodos estão em uso generalizado hoje. Há mais administradores profissionais de dinheiro que se consideram comerciantes "Sistemáticos ou Mecânicos" do que aqueles que se consideram "discricionários", e o desempenho dos administradores de fundos sistemáticos é geralmente superior ao dos gerentes de dinheiro discricionários. Estudos têm mostrado que as contas de negociação geralmente perdem dinheiro com mais frequência se o cliente não estiver usando um sistema de negociação. O aumento significativo nos Sistemas de Negociação nos últimos 10 anos é evidente especialmente nas corretoras de commodities, no entanto, as corretoras de ações e ações estão cada vez mais conscientes dos benefícios através do uso de Sistemas de Negociação e algumas começaram a oferecer Sistemas de Negociação aos seus clientes de varejo.
A maioria dos gestores de fundos mútuos já está usando algoritmos de computador sofisticados para orientar suas decisões sobre o que "estoque a escolher" ou que "rotação setorial" é a favor. Computadores e algoritmos se tornaram mainstream no investimento e esperamos que essa tendência continue enquanto os investidores mais experientes em informática continuam a permitir que parcelas de seu dinheiro sejam gerenciadas pela Trading Systems para reduzir o risco e aumentar os retornos. As enormes perdas experimentadas pelos investidores que participam na compra e manutenção de ações e fundos mútuos como o mercado de ações derretido nos últimos anos está promovendo esse movimento no sentido de uma abordagem mais disciplinada e lógica para o investimento no mercado de ações. O investidor médio percebe que atualmente ele permite que muitos aspectos de suas vidas e a vida de seus entes queridos sejam mantidos ou controlados por computadores, como os automóveis e aeronaves que usamos para o transporte, os equipamentos de diagnóstico médico que usamos para a manutenção da saúde, os controladores de aquecimento e refrigeração que usamos para controle de temperatura, as redes que usamos para informações baseadas na Internet, até mesmo os jogos que jogamos para entretenimento. Por que então alguns investidores de varejo acreditam que podem "atirar nos quadris" em suas decisões sobre "o que" ações ou fundo mútuo para comprar ou vender e esperar ganhar dinheiro? Finalmente, o investidor médio tornou-se cauteloso com os conselhos e informações encaminhados por corretores inescrupulosos, contadores, diretores de empresas e consultores financeiros.
Nos últimos 20 anos, matemáticos e desenvolvedores de software buscaram indicadores e padrões nos mercados de ações e commodities em busca de informações que apontassem para a direção do mercado. Esta informação pode ser usada para melhorar o desempenho dos Sistemas de Negociação. Geralmente este processo de descoberta é realizado através de uma combinação de tentativa e erro e mais sofisticada "Data Mining". Normalmente, o desenvolvedor levará semanas ou meses processando os números para produzir um Sistema de Negociação em potencial. Muitas vezes, este Sistema de Negociação não terá um bom desempenho quando realmente usado no futuro, devido ao que é chamado de "ajuste de curva". Ao longo dos anos tem havido muitos Trading Systems (e empresas de desenvolvimento de Trading System) que vêm e vão como seus sistemas falharam em negociação ao vivo. Desenvolver Sistemas Comerciais que continuem a atuar no futuro é difícil, mas não impossível de realizar, embora nenhum desenvolvedor ético ou gestor de dinheiro dê uma garantia incondicional de que qualquer Sistema de Negociação, ou mesmo qualquer ação, título ou fundo mútuo, continuará. para produzir lucros para o futuro para sempre.
O que levou semanas ou meses para o desenvolvedor do Trading System produzir no passado pode agora ser produzido em minutos com o uso do Trading System Lab. O Trading System Lab é uma plataforma para a geração automática de Sistemas de Negociação e Indicadores de Negociação. A TSL utiliza um Mecanismo de Programação Genética de alta velocidade e produzirá Sistemas de Negociação a uma taxa de mais de 16 milhões de barras de sistema por segundo, com base em 56 entradas. Observe que apenas algumas entradas serão realmente usadas ou necessárias, resultando em estruturas de estratégia geralmente simples e evoluídas. Com aproximadamente 40.000 a 200.000 sistemas necessários para uma convergência, o tempo de convergência para qualquer conjunto de dados pode ser aproximado. Note que não estamos simplesmente executando uma otimização de força bruta de indicadores existentes procurando por parâmetros ótimos a partir dos quais usar em um Sistema de Negociação já estruturado. O Gerador de Sistema de Negociação começa em uma origem de ponto zero, não fazendo suposições sobre o movimento do mercado no futuro e então "evolui" Sistemas de negociação a uma taxa muito alta combinando informações presentes no mercado e formulando novos filtros, funções, condições e relacionamentos à medida que avança em direção a um Sistema de Negociação "geneticamente modificado". O resultado é que um excelente Sistema de Negociação pode ser gerado em poucos minutos em 20 a 30 anos de dados diários de mercado em praticamente qualquer mercado.
Nos últimos anos, tem havido várias abordagens para a otimização do Sistema de Negociação que empregam o "Algoritmo" Genético menos poderoso. Os Programas Genéticos (GPs) são superiores aos Algoritmos Genéticos (GA's) por várias razões. Primeiro, os GP's convergem em uma solução a uma taxa exponencial (muito rápida e ficando mais rápida) enquanto os Algoritmos Genéticos convergem a uma taxa linear (muito mais lenta e não ficando mais rápida). Em segundo lugar, as GP's geram realmente um código de máquina do Sistema de Negociação que combina o material genético (indicadores, padrões, dados entre mercados) de maneiras únicas. Essas combinações exclusivas podem não ser intuitivamente óbvias e não exigem definições iniciais pelo desenvolvedor do sistema. As relações matemáticas únicas criadas podem se tornar novos indicadores ou variantes na Análise Técnica, ainda não desenvolvidas ou descobertas. Os GAs, por outro lado, simplesmente procuram soluções ótimas à medida que progridem ao longo da faixa de parâmetros; eles não descobrem novas relações matemáticas e não escrevem seu próprio código de sistema de negociação. O código de criação do Trading System da GP de vários comprimentos, usando genomas de tamanho variável, modificará o comprimento do Sistema de Negociação através do que é chamado crossover não homólogo e descartará completamente um indicador ou padrão que não contribua para a eficiência do Sistema de Negociação. Os GA's usam apenas blocos de instrução de tamanho fixo, fazendo uso somente de crossover homólogo e não produzem códigos de Sistema de negociação de comprimento variável, nem descartarão um indicador ou padrão ineficiente tão facilmente quanto um GP. Finalmente, os Programas Genéticos são um avanço recente no domínio do aprendizado de máquina, enquanto os Algoritmos Genéticos foram descobertos há 30 anos. Os programas genéticos incluem todas as principais funcionalidades dos Algoritmos Genéticos; crossover, reprodução, mutação e fitness, no entanto, as GP's incluem recursos muito mais rápidos e robustos, tornando a GP a melhor escolha para a produção da Trading Systems. O GP empregado no Trading System Generator da TSL é o GP mais rápido atualmente disponível e não está disponível em nenhum outro software do mercado financeiro no mundo.
O Algoritmo de Programação Genética, o Simulador de Negociação e os Motores de Fitness usados ​​na TSL levaram mais de 8 anos para serem produzidos.
O Trading System Lab é o resultado de anos de trabalho árduo de uma equipe de engenheiros, cientistas, programadores e traders, e acreditamos que representa a tecnologia mais avançada disponível atualmente para a negociação nos mercados.

Algorithmic Trading System Design & amp; Implementação.
AlgorithmicTrading é um desenvolvedor de sistema de negociação de terceiros especializado em sistemas automatizados de negociação, estratégias de negociação algorítmica e análise de negociação quantitativa. Oferecemos dois algoritmos de negociação distintos para comerciantes de varejo e investidores profissionais.
Assista ao nosso blog de vídeo algorítmico em que nosso principal desenvolvedor analisa o desempenho a partir de 6/10/17 & ndash; 8/8/17 usando nosso sistema de negociação automatizado. Visite nosso Blog Algorithmic Trading para ver todos os vídeos de desempenho de 2016-2018 no acumulado do ano. Os futuros e opções de negociação envolvem risco substancial de perda e não são adequados para todos os investidores.
Comece hoje mesmo na negociação algorítmica.
Os Destaques do Swing Trader.
Nossa Swing Trading Strategy negocia o S & P 500 Emini Futures (ES) e o Ten Year Note (TY). Este é um sistema de negociação 100% automatizado que pode ser executado automaticamente com os melhores esforços por vários Corretores Registrados da NFA. Também pode ser instalado e carregado na plataforma Tradestation. Os seguintes dados cobrem o período de avanço (fora da amostra) que abrange 10/1 / 15-1 / 4/18. A negociação de futuros envolve risco substancial de perda e não é apropriada para todos os investidores. O desempenho passado não é indicativo de desempenho futuro. Esses dados presumem que 1 unidade (US $ 15.000) foi negociada durante todo o período em análise (non-compounded).
* Perdas podem exceder o rebaixamento máximo. Isso é medido de pico a vale, fechando o comércio para fechar o comércio. O desempenho passado não é indicativo de desempenho futuro.
O Swing Trader Mensal P / L.
Os negócios iniciados em outubro de 2015 são considerados Walk-Forward / Out-of-Sample, enquanto os negócios anteriores a outubro de 2015 são considerados back-tested. Os lucros / perdas fornecidos são baseados em uma conta de US $ 15.000 que troca 1 unidade no Swing Trader. Esses dados não são compostos.
* Perdas podem exceder o rebaixamento máximo. Isso é medido de pico a vale, fechando o comércio para fechar o comércio. O desempenho passado não é indicativo de desempenho futuro.
CFTC REGRA 4.41: Os resultados são baseados em resultados de desempenho simulados ou hipotéticos que possuem certas limitações inerentes. Ao contrário dos resultados mostrados em um registro de desempenho real, esses resultados não representam negociação real. Além disso, como esses negócios não foram efetivamente executados, esses resultados podem ter uma compensação maior ou menor pelo impacto, se houver, de alguns fatores de mercado, como a falta de liquidez. Programas de negociação simulados ou hipotéticos em geral também estão sujeitos ao fato de que eles são projetados com o benefício da retrospectiva. Não está sendo feita nenhuma representação de que qualquer conta terá ou poderá obter lucros ou perdas similares a essas demonstrações.
Noções básicas de negociação algorítmica.
O Algorithmic Trading, também conhecido como Quant Trading, é um estilo de negociação que utiliza algoritmos de previsão de mercado para encontrar transações potenciais. Existem várias subcategorias de negociação quantitativa para incluir High Frequency Trading (HFT), Arbitragem Estatística e Análise de Predição de Mercado. Na AlgorithmicTrading, nós nos concentramos no desenvolvimento de sistemas de negociação automatizados que fazem negócios de swing, dia e opções para aproveitar as ineficiências do mercado.
Atualmente, estamos oferecendo dois sistemas de negociação de futuros que negociam o ES & amp; Futuros de TY. Continue lendo para ver por si mesmo como implementar um sistema de negociação de algo projetado profissionalmente pode ser benéfico para suas metas de investimento. Nós não somos registrados Consultores de Negociação de Commodities e, portanto, não controlamos diretamente as contas de clientes & ndash; no entanto, negociamos ambos os sistemas de negociação com nosso próprio capital, utilizando um dos corretores de execução de negociação automatizada.
Exemplo de negociação algorítmica.
Estratégia de negociação de futuros: o pacote Swing Trader.
Este pacote utiliza nossos algoritmos de melhor desempenho desde o início. Visite a página do comerciante do swing para ver preços, estatísticas comerciais completas, lista completa de comércio e muito mais. Este pacote é ideal para o cético que deseja negociar um sistema robusto que tenha se saído bem em negociações cegas para fora e para fora da amostra. Cansado de modelos otimistas com back-testing que nunca parecem funcionar quando negociados ao vivo? Se assim for, considere este sistema de negociação de caixa preta. Este é o nosso algoritmo de negociação mais popular para venda.
Detalhes no Swing Trader System.
Futuros & amp; Estratégia de negociação de opções: o pacote S & amp; P Crusher v2.
Este pacote utiliza sete estratégias de negociação em uma tentativa de diversificar melhor sua conta. Este pacote utiliza comércios de swing, day trades, condutores de ferro e chamadas cobertas para tirar proveito de várias condições de mercado. Este pacote é negociado em unidades de tamanho de US $ 30.000 e foi lançado ao público em outubro de 2016. Visite a página de produtos do S & amp; P Crusher para ver os resultados do back-test com base nos relatórios de comercialização.
Detalhes no triturador S & P.
Cobrindo os fundamentos do design do sistema de negociação automatizado.
Múltiplos Sistemas de Negociação Algorítmica Disponíveis.
Escolha de um dos nossos sistemas de negociação & ndash; O Swing Trader ou o S & amp; P Crusher. Cada página mostra a lista de negociação completa, incluindo resultados de otimização de post-forward, walk-forward. Esses sistemas de negociação informatizados de caixa preta são totalmente automatizados para gerar alfa ao tentar minimizar o risco.
Algoritmos de negociação múltiplos trabalhando juntos.
Nossa metodologia de negociação quântica nos emprega várias estratégias de negociação de algoritmos para diversificar melhor sua conta de negociação automática. Saiba mais visitando nossa página de metodologia de design de estratégias de negociação.
Trades During Bear & amp; Mercados de touro.
Em nossa opinião, a chave para o desenvolvimento de um sistema de negociação algorítmica que realmente funciona é contabilizar múltiplas condições de mercado. A qualquer momento, o mercado poderia passar de um touro para um mercado em baixa. Ao tomar uma posição agnóstica de direção de mercado, estamos tentando superar o desempenho em Bull & amp; Condições de mercado do urso.
Sistemas de negociação totalmente automatizados.
Você pode negociar automaticamente nosso software algorítmico usando um corretor de execução automática (com os melhores esforços). Temos vários corretores para você escolher. Remova as decisões baseadas em emoções de sua negociação usando nosso sistema de negociação automatizado.
O comércio algorítmico funciona?
Acompanhe o progresso diário de nossos algoritmos de negociação quantitativa com o aplicativo do corretor OEC. Você também receberá declarações diárias da empresa de compensação da NFA Registered. Você pode comparar cada uma das suas negociações com a lista comercial que publicamos no final de cada dia. Exemplos completos de negociação algorítmica são postados para todos verem. A lista completa de transações pode ser vista visitando a página de negociação algorítmica do sistema que você está negociando. Quer ver algumas declarações de contas ativas? Visite os retornos ao vivo & amp; página de instruções.
Múltiplas Estratégias de Negociação Quant.
Nossos sistemas de negociação quantitativos têm diferentes expectativas com base nos algoritmos preditivos empregados. Nossos Sistemas de Negociação Automatizada colocarão operações de swing, day trade, condutores de ferro & amp; chamadas cobertas. Estas Estratégias 100% Quant baseiam-se puramente em indicadores técnicos e algoritmos de reconhecimento de padrões.
Nosso software de negociação automatizada ajuda a remover suas emoções da negociação.
Algoritmos de negociação múltiplos são negociados como parte de um maior sistema de negociação algorítmica.
Cada estratégia de negociação algorítmica oferecida tem vários pontos fortes e fracos. Seus pontos fortes e fracos são identificados com base em três estados de mercado potenciais: Strong Up, Sideways & amp; Abaixo mercados em movimento. A estratégia de negociação de condores de ferro supera os mercados em movimento lateral e ascendente, enquanto o algoritmo das notas de tesouro se destaca nos mercados em baixa. Com base no backtesting, espera-se que o algoritmo de momentum tenha um bom desempenho durante os mercados em ascensão. Confira a seguinte coleção de vídeos, onde cada algoritmo de negociação oferecido é revisado por nosso desenvolvedor líder. Os pontos fortes de cada algoritmo de negociação são analisados ​​juntamente com as suas fraquezas.
Vários tipos de estratégias de negociação são usados ​​em nosso software de negociação automatizada.
Comissões do dia são inseridas & amp; saiu no mesmo dia, enquanto as negociações de giro terão um longo prazo de negociação com base nas expectativas para o S & amp; P 500 a tendência de maior ou menor no prazo intermédio. Os negócios de opções são colocados nas opções semanais do S & amp; P 500 sobre futuros, normalmente entrando em uma segunda-feira e mantendo até a expiração da sexta-feira.
Swing Trading Strategies.
As seguintes Swing Trading Strategies colocam operações de swing direcional no S & amp; P 500 Emini Futures (ES) e na Nota de Dez Anos (TY). Eles são usados ​​em ambos os sistemas de negociação automatizados que oferecemos para aproveitar as tendências de longo prazo que nossos algoritmos de predição de mercado estão esperando.
Futures Swing Trading Strategy # 1: Momentum Swing Trading Algorithm.
A Momentum Swing Trading Strategy coloca os negócios do swing no Emini S & amp; P Futures, aproveitando as condições de mercado que sugerem um movimento de prazo intermediário mais alto. Este algoritmo de negociação é usado em ambos os nossos sistemas de negociação automatizados: O S & amp; P Crusher v2 & amp; O comerciante do balanço.
Estratégia de Negociação de Futuros Swing # 2: Algoritmo de Notas do Tesouro de Dez Anos.
A Tesouraria Note (TY) Trading Strategy coloca swing trades na nota de dez anos (TY). Uma vez que o TY tipicamente se move inversamente para os mercados mais amplos, esta estratégia cria um trade swing semelhante ao shorting do S & P 500. Esse algoritmo T-Note tem expectativas positivas para condições de mercado em baixa. Este algoritmo de negociação é usado em ambos os nossos sistemas de negociação automatizados: O S & amp; P Crusher v2 & amp; O comerciante do balanço.
Estratégias de Negociação Diária.
As estratégias de negociação do dia seguinte colocam o day trade no S & amp; P 500 Emini Futures (ES). Eles quase sempre entram em negociações durante os primeiros 20 minutos após a abertura dos mercados de ações e saem antes do fechamento dos mercados. Paradas apertadas são utilizadas em todos os momentos.
Estratégia de Negociação do Dia de Futuros # 1: Algoritmo de Negociação de Dia.
A Estratégia de Negociação de Dia Curta coloca negociações diárias no Emini S & P Futures quando o mercado mostra fraqueza pela manhã (prefere uma grande diferença para baixo). Esta estratégia de negociação é utilizada no sistema de negociação automatizado S & amp; P Crusher v2.
Estratégia de Negociação de Dia de Futuro # 2: Algoritmo de Negociação de Dia de Breakout.
A Breakout Day Trading Strategy coloca o day trade no Emini-S & P Futures quando o mercado mostra força pela manhã. Esta estratégia de negociação de futuros é utilizada no sistema de negociação automatizado S & amp; P Crusher v2.
Estratégia de Negociação de Dia de Futuros # 3: Algoritmo de Negociação de Dia de Intervalo da Manhã.
O Morning Gap Day Trading Strategy coloca negócios de dia curto no Emini S & amp; P Futures quando o mercado tem uma grande lacuna, seguido por um curto período de fraqueza. Esta estratégia de negociação é utilizada no sistema de negociação automatizado S & amp; P Crusher v2.
Estratégias de Negociação de Opções.
As seguintes estratégias de negociação de opções cobram prêmio no S & amp; P 500 Emini Weekly Options (ES). Eles são usados ​​em nosso S & amp; P Crusher v2, a fim de aproveitar as vantagens de lateralmente, para baixo & amp; condições de mercado em movimento. Um benefício para as opções de negociação com nossas estratégias de negociação algorítmica é que elas são suportadas em um ambiente de negociação automatizado usando um dos corretores de execução automática.
Opções Trading Strategy # 1: Algoritmo de Condor Iron Condor.
A Estratégia de Negociação de Opções da Iron Condor é perfeita para quem deseja uma taxa de ganhos por negociação mais alta e que simplesmente quer cobrar prêmios no S & amp; P 500 Emini Futures com a venda da Iron Condors. Quando nossos algoritmos esperam uma condição de mercado de derivação lateral ou ascendente, esse sistema criará uma operação de Condor de Ferro. Essa estratégia é usada em um dos nossos Sistemas de negociação automatizados: O S & amp; P Crusher v2.
Estratégia de negociação de opções # 2: Algoritmo de opções de chamadas cobertas.
A Estratégia de Negociação de Opções de Compra Coberta vende de chamadas cobertas por dinheiro contra os algoritmos de momento Long swing swing, para arrecadar premium e ajudar a minimizar as perdas caso o mercado se mova contra nossa posição de algoritmo de momentum. Quando negociado com o Algoritmo de Troca de Momentum Swing - como é o caso no S & amp; P Crusher & amp; ES / TY Futures Trading Systems, isso cria uma posição de compra coberta. Quando negociados no Sistema de Negociação Bearish Trader, as chamadas são vendidas sem cobertura e, portanto, são vendidas a descoberto. Em ambos os casos, & ndash; como um suporte ao longo do algoritmo & ndash; Ele funciona bem em condições de mercado em movimento lateral e para baixo. Essa estratégia é usada em um dos nossos Sistemas de negociação automatizados: O S & amp; P Crusher v2.
Embora cada uma dessas estratégias de negociação possa ser negociada sozinha, elas são negociadas melhor em uma coleção mais ampla de algoritmos de negociação & ndash; como visto em um dos nossos sistemas automatizados de negociação, como o The Swing Trader.
Algoritmos de negociação que realmente funcionam?
Essa série de vídeos de negociação algorítmica é feita para que nossos clientes possam ver os detalhes de cada negociação semanalmente. Assista a cada um dos seguintes vídeos de negociação algorítmica para ver em tempo real o desempenho de nossos algoritmos de negociação. Sinta-se à vontade para visitar nossos Críticas de AlgorithmicTrading & amp; Página Press Releases para ver o que os outros estão dizendo sobre nós.
Inscrição na Newsletter.
Obtenha atualizações de desempenho da AlgorithmicTrading juntando-se à nossa newsletter.
O que separa o comércio algorítmico de outras técnicas técnicas de negociação?
Nos dias de hoje, parece que todo mundo tem uma opinião sobre as técnicas de negociação técnica. Head & amp; Padrões de ombros, MACD Bullish Crosses, VWAP Divergences, a lista continua. Nesses vídeos, nosso engenheiro líder de projeto analisa alguns exemplos de estratégias de negociação encontradas on-line. Ele pega suas Tips Trading, faz um código e executa um back-test simples para ver o quão efetivas elas realmente são. Depois de analisar seus resultados iniciais, ele otimiza o código para ver se uma abordagem quantitativa à negociação pode melhorar as descobertas iniciais. Se você é novo em negociação algorítmica, esses blogs de vídeo serão bastante interessantes. Nosso designer utiliza máquinas de estado finito para codificar essas dicas básicas de negociação. Como a negociação algorítmica difere da negociação técnica tradicional? Simplificando, Algorithmic Trading requer precisão e fornece uma janela para um potencial de algoritmos baseado em back-testing que possui limitações.
Procurando por Algorithmic Trading Tutorial & amp; Como para vídeos?
Assista a várias apresentações de vídeo educativo feitas por nosso designer líder em negociação algorítmica para incluir um vídeo que cobre nossa Metodologia de Design de Quantificação Comercial e um Tutorial de Negociação Algorítmica. Esses vídeos de estratégia de negociação fornecem exemplos de codificação de comércio algorítmico e o introduzem à nossa abordagem de negociar os mercados usando análise quantitativa. Nesses vídeos, você verá muitas razões pelas quais a negociação automatizada está decolando para incluir a ajuda para remover suas emoções da negociação. Visite nossa página de vídeos de negociação educacional para ver uma lista completa de mídia educacional.
Comece a usar um dos nossos sistemas de negociação automatizados hoje.
Não perca. Junte-se aos que já estão negociando com AlgorithmicTrading. Comece hoje mesmo com um dos nossos pacotes de negociação algorítmica.
Várias opções de execução automática de comércio estão disponíveis.
Nossos algoritmos de negociação podem ser executados automaticamente usando um dos corretores de execução automática registrados pela NFA (com os melhores esforços) ou podem ser negociados em seu próprio PC usando MultiCharts ou Tradestation.
O FOX Group é uma corretora de introdução independente localizada no icônico prédio da Chicago Board of Trade, no coração do distrito financeiro da cidade. Eles são registrados no NFA e são capazes de executar nossos algoritmos automaticamente com os melhores esforços.
Os corretores interativos são corretores registrados pela NFA que podem executar nossos algoritmos automaticamente com os melhores esforços. Além disso, eles suportam clientes canadenses.
Se você preferir executar os algoritmos em seu próprio PC, o MultiCharts é a plataforma preferida de software de negociação para execução automática. Ele oferece benefícios consideráveis ​​para os traders e oferece vantagens significativas sobre as plataformas concorrentes. Ele vem com gráficos de alta definição, suporte a mais de 20 feeds de dados e mais de 10 corretores, backtesting dinâmico de estratégia em nível de portfólio, suporte a EasyLanguage, relatórios interativos de desempenho, otimização genética, scanner de mercado e replay de dados.
A TradeStation é mais conhecida pelo software de análise e pela plataforma de negociação eletrônica que fornece ao operador ativo e a determinados mercados de traders institucionais que permitem que os clientes projetem, testem, otimizem, monitorem e automatizem suas próprias ações, opções e opções personalizadas. estratégias de negociação de futuros. Tradestation é outra opção para pessoas que desejam negociar automaticamente nossos algoritmos em seu próprio PC.

Melhor Linguagem de Programação para Sistemas de Negociação Algorítmica?
Melhor Linguagem de Programação para Sistemas de Negociação Algorítmica?
Uma das perguntas mais freqüentes que recebo no mailbag do QS é "Qual é a melhor linguagem de programação para negociação algorítmica?". A resposta curta é que não há "melhor" linguagem. Parâmetros de estratégia, desempenho, modularidade, desenvolvimento, resiliência e custo devem ser considerados. Este artigo descreverá os componentes necessários de uma arquitetura de sistema de comércio algorítmico e como as decisões relativas à implementação afetam a escolha da linguagem.
Primeiramente, os principais componentes de um sistema de negociação algorítmica serão considerados, como as ferramentas de pesquisa, o otimizador de portfólio, o gerenciador de risco e o mecanismo de execução. Posteriormente, diferentes estratégias de negociação serão examinadas e como elas afetam o design do sistema. Em particular, a frequência de negociação e o volume de negociação provável serão ambos discutidos.
Uma vez que a estratégia de negociação tenha sido selecionada, é necessário arquitetar todo o sistema. Isso inclui a escolha de hardware, o sistema operacional e a resiliência do sistema contra eventos raros e potencialmente catastróficos. Enquanto a arquitetura está sendo considerada, a devida atenção deve ser dada ao desempenho - tanto para as ferramentas de pesquisa quanto para o ambiente de execução ao vivo.
Qual é o sistema de negociação tentando fazer?
Antes de decidir sobre a "melhor" linguagem com a qual escrever um sistema de negociação automatizado, é necessário definir os requisitos. O sistema será puramente baseado em execução? O sistema exigirá um módulo de gerenciamento de risco ou de construção de portfólio? O sistema exigirá um backtester de alto desempenho? Para a maioria das estratégias, o sistema de negociação pode ser particionado em duas categorias: Pesquisa e geração de sinais.
A pesquisa está preocupada com a avaliação de um desempenho da estratégia em relação aos dados históricos. O processo de avaliação de uma estratégia de negociação sobre dados de mercado anteriores é conhecido como backtesting. O tamanho dos dados e a complexidade algorítmica terão um grande impacto na intensidade computacional do backtester. A velocidade e a simultaneidade da CPU costumam ser os fatores limitantes na otimização da velocidade de execução da pesquisa.
A geração de sinais preocupa-se em gerar um conjunto de sinais de negociação de um algoritmo e enviar esses pedidos ao mercado, geralmente por meio de uma corretora. Para determinadas estratégias, é necessário um alto nível de desempenho. Problemas de E / S, como largura de banda de rede e latência, são muitas vezes o fator limitante na otimização de sistemas de execução. Assim, a escolha de idiomas para cada componente de todo o seu sistema pode ser bem diferente.
Tipo, Frequência e Volume de Estratégia.
O tipo de estratégia algorítmica empregada terá um impacto substancial no design do sistema. Será necessário considerar os mercados que estão sendo negociados, a conectividade com fornecedores de dados externos, a frequência e o volume da estratégia, o tradeoff entre facilidade de desenvolvimento e otimização de desempenho, bem como qualquer hardware personalizado, incluindo customização co-localizada servidores, GPUs ou FPGAs que possam ser necessários.
As escolhas tecnológicas para uma estratégia de ações norte-americanas de baixa frequência serão muito diferentes daquelas de uma negociação de estratégia de arbitragem estatística de alta frequência no mercado de futuros. Antes da escolha da linguagem, muitos fornecedores de dados devem ser avaliados quanto à estratégia em questão.
Será necessário considerar a conectividade com o fornecedor, a estrutura de quaisquer APIs, a pontualidade dos dados, os requisitos de armazenamento e a resiliência em face de um fornecedor ficar off-line. Também é aconselhável ter acesso rápido a vários fornecedores! Vários instrumentos têm suas próprias peculiaridades de armazenamento, exemplos dos quais incluem vários símbolos de ticker para ações e datas de vencimento para futuros (para não mencionar quaisquer dados OTC específicos). Isso precisa ser levado em conta no design da plataforma.
A frequência da estratégia é provavelmente um dos maiores impulsionadores de como a pilha de tecnologia será definida. Estratégias que empregam dados com mais freqüência do que minuciosamente ou em segundo lugar exigem consideração significativa com relação ao desempenho.
Uma estratégia que excede as segundas barras (isto é, dados de ticks) leva a um design orientado pelo desempenho como o requisito primário. Para estratégias de alta frequência, uma quantidade substancial de dados de mercado precisará ser armazenada e avaliada. Softwares como HDF5 ou kdb + são comumente usados ​​para essas funções.
Para processar os volumes extensos de dados necessários para aplicativos HFT, um backtester e um sistema de execução extensivamente otimizados devem ser usados. C / C ++ (possivelmente com algum montador) é provável que seja o candidato a idioma mais forte. Estratégias de frequência ultra-alta quase certamente exigirão hardware customizado, como FPGAs, co-location de troca e ajuste de interface de rede / kernal.
Sistemas de pesquisa.
Os sistemas de pesquisa geralmente envolvem uma mistura de desenvolvimento interativo e scripts automatizados. O primeiro ocorre com frequência dentro de um IDE, como o Visual Studio, o MatLab ou o R Studio. Este último envolve extensos cálculos numéricos sobre numerosos parâmetros e pontos de dados. Isso leva a uma escolha de idioma que fornece um ambiente simples para testar o código, mas também fornece desempenho suficiente para avaliar estratégias em várias dimensões de parâmetro.
IDEs típicos nesse espaço incluem o Microsoft Visual C ++ / C #, que contém extensos utilitários de depuração, recursos de conclusão de código (via "Intellisense") e visões gerais simples da pilha inteira do projeto (via banco de dados ORM, LINQ); MatLab, que é projetado para extensa álgebra linear numérica e operações vetorizadas, mas de uma forma de console interativo; R Studio, que envolve o console de linguagem estatística R em um IDE completo; Eclipse IDE para Linux Java e C ++; e IDEs semi-proprietários como o Enthought Canopy for Python, que incluem bibliotecas de análise de dados como NumPy, SciPy, scikit-learn e pandas em um único ambiente interativo (console).
Para backtesting numérico, todos os idiomas acima são adequados, embora não seja necessário utilizar uma GUI / IDE, pois o código será executado "em segundo plano". A consideração principal neste estágio é a velocidade de execução. Uma linguagem compilada (como C ++) é geralmente útil se as dimensões do parâmetro de backtesting forem grandes. Lembre-se que é necessário ter cuidado com esses sistemas, se for esse o caso!
Linguagens interpretadas, como Python, geralmente usam bibliotecas de alto desempenho como o NumPy / pandas para a etapa de backtesting, a fim de manter um grau razoável de competitividade com equivalentes compilados. Em última análise, a linguagem escolhida para o backtesting será determinada por necessidades algorítmicas específicas, bem como o leque de bibliotecas disponíveis na linguagem (mais sobre isso abaixo). No entanto, a linguagem usada para os ambientes de backtester e de pesquisa pode ser completamente independente daquelas usadas nos componentes de construção de portfólio, gerenciamento de risco e execução, como será visto.
Construção de Carteira e Gestão de Risco.
Os componentes de gerenciamento de risco e de construção de portfólio são frequentemente negligenciados por traders algorítmicos de varejo. Isso é quase sempre um erro. Essas ferramentas fornecem o mecanismo pelo qual o capital será preservado. Eles não apenas tentam aliviar o número de apostas "arriscadas", mas também minimizam a rotatividade dos negócios, reduzindo os custos de transação.
Versões sofisticadas desses componentes podem ter um efeito significativo na qualidade e consistência da lucratividade. É fácil criar uma estratégia estável, pois o mecanismo de construção de portfólio e o gerenciador de risco podem ser facilmente modificados para lidar com vários sistemas. Assim, eles devem ser considerados componentes essenciais no início do projeto de um sistema de negociação algorítmica.
O trabalho do sistema de construção de portfólio é pegar um conjunto de negócios desejados e produzir o conjunto de negociações reais que minimizam o churn, manter exposições a vários fatores (como setores, classes de ativos, volatilidade, etc.) e otimizar a alocação de capital para vários estratégias em um portfólio.
A construção de portfólio geralmente se reduz a um problema de álgebra linear (como uma fatoração de matriz) e, portanto, o desempenho é altamente dependente da eficácia da implementação da álgebra linear numérica disponível. Bibliotecas comuns incluem uBLAS, LAPACK e NAG para C ++. O MatLab também possui operações de matriz amplamente otimizadas. O Python utiliza o NumPy / SciPy para tais cálculos. Um portfólio freqüentemente reequilibrado exigirá uma biblioteca matricial compilada (e bem otimizada!) Para realizar este passo, de modo a não afunilar o sistema de negociação.
O gerenciamento de riscos é outra parte extremamente importante de um sistema de negociação algorítmica. O risco pode vir de várias formas: aumento da volatilidade (embora isso possa ser visto como desejável para certas estratégias!), Aumento de correlações entre classes de ativos, inadimplência de terceiros, interrupções de servidor, eventos "black swan" e erros não detectados no código de negociação. para nomear alguns.
Os componentes de gerenciamento de risco tentam antecipar os efeitos da volatilidade excessiva e correlação entre as classes de ativos e seus efeitos subseqüentes sobre o capital comercial. Muitas vezes, isso reduz a um conjunto de cálculos estatísticos, como os "testes de estresse" de Monte Carlo. Isso é muito semelhante às necessidades computacionais de um mecanismo de precificação de derivativos e, como tal, será vinculado à CPU. Estas simulações são altamente paralelizáveis ​​(veja abaixo) e, até certo ponto, é possível "lançar hardware no problema".
Sistemas de Execução.
O trabalho do sistema de execução é receber sinais de negociação filtrados dos componentes de construção de carteira e gestão de risco e enviá-los para uma corretora ou outros meios de acesso ao mercado. Para a maioria das estratégias de negociação algorítmica de varejo, isso envolve uma conexão API ou FIX para uma corretora como a Interactive Brokers. As principais considerações ao decidir sobre uma linguagem incluem a qualidade da API, a disponibilidade do wrapper de idioma para uma API, a frequência de execução e o escorregamento previsto.
A "qualidade" da API refere-se a quão bem documentada ela é, que tipo de desempenho ela fornece, se precisa de software independente para ser acessado ou se um gateway pode ser estabelecido de maneira sem cabeça (ou seja, sem GUI). No caso dos Interactive Brokers, a ferramenta Trader WorkStation precisa estar em execução em um ambiente GUI para acessar sua API. Certa vez, tive que instalar uma edição Ubuntu Desktop em um servidor de nuvem da Amazon para acessar remotamente o Interactive Brokers, puramente por esse motivo!
A maioria das APIs fornecerá uma interface C ++ e / ou Java. Geralmente, cabe à comunidade desenvolver wrappers específicos de linguagem para C #, Python, R, Excel e MatLab. Observe que, com cada plug-in adicional utilizado (especialmente os wrappers de APIs), há escopo para os bugs se infiltrarem no sistema. Sempre teste plugins desse tipo e garanta que eles sejam ativamente mantidos. Um indicador que vale a pena é ver quantas novas atualizações foram feitas em uma base de código nos últimos meses.
Freqüência de execução é da maior importância no algoritmo de execução. Observe que centenas de pedidos podem ser enviados a cada minuto e, como tal, o desempenho é crítico. A derrapagem será incorrida através de um sistema de execução com péssimo desempenho e isso terá um impacto dramático na lucratividade.
As linguagens com tipagem estática (veja abaixo) como C ++ / Java são geralmente ótimas para execução, mas há um compromisso em tempo de desenvolvimento, teste e facilidade de manutenção. Linguagens dinamicamente tipificadas, como Python e Perl, são geralmente "rápidas o suficiente". Certifique-se sempre de que os componentes são projetados de maneira modular (veja abaixo) para que possam ser "trocados" conforme o sistema é dimensionado.
Planejamento arquitetônico e processo de desenvolvimento.
Os componentes de um sistema de negociação, seus requisitos de freqüência e volume foram discutidos acima, mas a infra-estrutura do sistema ainda não foi coberta. Aqueles que atuam como comerciantes de varejo ou que trabalham em um pequeno fundo provavelmente estarão "usando muitos chapéus". Será necessário cobrir o modelo alfa, os parâmetros de gerenciamento de risco e execução, e também a implementação final do sistema. Antes de aprofundar em linguagens específicas, o design de uma arquitetura de sistema ideal será discutido.
Separação de preocupações.
Uma das decisões mais importantes que devem ser tomadas no início é como "separar as preocupações" de um sistema de negociação. No desenvolvimento de software, isso significa essencialmente dividir os diferentes aspectos do sistema de negociação em componentes modulares separados.
Ao expor as interfaces em cada um dos componentes, é fácil trocar partes do sistema por outras versões que auxiliem o desempenho, a confiabilidade ou a manutenção, sem modificar nenhum código de dependência externo. Essa é a "melhor prática" para esses sistemas. Para estratégias em freqüências mais baixas, tais práticas são recomendadas. Para negociação de ultra alta frequência, o livro de regras pode ter que ser ignorado em detrimento do ajuste do sistema para um desempenho ainda maior. Um sistema mais fortemente acoplado pode ser desejável.
Criar um mapa de componentes de um sistema de negociação algorítmico vale um artigo em si. No entanto, uma abordagem ideal é garantir que haja componentes separados para as entradas de dados de mercado históricas e em tempo real, armazenamento de dados, API de acesso a dados, backtester, parâmetros estratégicos, construção de portfólio, gerenciamento de risco e sistemas automatizados de execução.
Por exemplo, se o armazenamento de dados em uso estiver atualmente com desempenho insatisfatório, mesmo em níveis significativos de otimização, ele poderá ser substituído com reescritas mínimas para a API de acesso a dados ou acesso a dados. Tanto quanto o backtester e componentes subseqüentes estão em causa, não há diferença.
Outro benefício dos componentes separados é que ele permite que uma variedade de linguagens de programação seja usada no sistema geral. Não há necessidade de se restringir a um único idioma se o método de comunicação dos componentes for independente de idioma. Este será o caso se eles estiverem se comunicando via TCP / IP, ZeroMQ ou algum outro protocolo independente de linguagem.
Como um exemplo concreto, considere o caso de um sistema de backtesting sendo escrito em C ++ para desempenho "processamento de números", enquanto o gerenciador de portfólio e os sistemas de execução são escritos em Python usando SciPy e IBPy.
Considerações de desempenho.
O desempenho é uma consideração significativa para a maioria das estratégias de negociação. Para estratégias de maior frequência, é o fator mais importante. "Desempenho" abrange uma ampla gama de problemas, como velocidade de execução algorítmica, latência de rede, largura de banda, E / S de dados, simultaneidade / paralelismo e dimensionamento. Cada uma dessas áreas é coberta individualmente por grandes livros didáticos, portanto, este artigo apenas arranhará a superfície de cada tópico. A arquitetura e a escolha de idiomas serão agora discutidas em termos de seus efeitos no desempenho.
A sabedoria predominante, como afirma Donald Knuth, um dos pais da Ciência da Computação, é que "a otimização prematura é a raiz de todo o mal". Isso é quase sempre o caso - exceto quando se constrói um algoritmo de negociação de alta frequência! Para aqueles que estão interessados ​​em estratégias de baixa frequência, uma abordagem comum é construir um sistema da maneira mais simples possível e apenas otimizar à medida que os gargalos começam a aparecer.
As ferramentas de criação de perfil são usadas para determinar onde os gargalos surgem. Os perfis podem ser feitos para todos os fatores listados acima, seja em um ambiente MS Windows ou Linux. Existem muitas ferramentas de sistema operacional e idioma disponíveis para isso, bem como utilitários de terceiros. A escolha da língua será agora discutida no contexto do desempenho.
C ++, Java, Python, R e MatLab contêm bibliotecas de alto desempenho (como parte de seus padrões ou externamente) para estrutura de dados básica e trabalho algorítmico. O C ++ é fornecido com a Biblioteca de Modelos Padrão, enquanto o Python contém o NumPy / SciPy. Tarefas matemáticas comuns são encontradas nessas bibliotecas e raramente é benéfico escrever uma nova implementação.
Uma exceção é se a arquitetura de hardware altamente personalizada for necessária e um algoritmo estiver fazendo uso extensivo de extensões proprietárias (como caches personalizados). No entanto, muitas vezes a "reinvenção da roda" desperdiça tempo que poderia ser mais bem gasto desenvolvendo e otimizando outras partes da infraestrutura de negociação. O tempo de desenvolvimento é extremamente precioso, especialmente no contexto de desenvolvedores únicos.
A latência é frequentemente uma questão do sistema de execução, pois as ferramentas de pesquisa geralmente estão situadas na mesma máquina. Para o primeiro, a latência pode ocorrer em vários pontos ao longo do caminho de execução. Os bancos de dados devem ser consultados (latência de disco / rede), os sinais devem ser gerados (operacional, latência do sistema de mensagens kernal), sinais de negociação enviados (latência da NIC) e pedidos processados ​​(latência interna do sistema de troca).
Para operações de freqüência mais alta, é necessário tornar-se intimamente familiarizado com a otimização do kernal, bem como com a otimização da transmissão da rede. Esta é uma área profunda e está significativamente além do escopo do artigo, mas se um algoritmo UHFT for desejado, esteja ciente da profundidade do conhecimento necessário!
O cache é muito útil no kit de ferramentas de um desenvolvedor de comércio quantitativo. O armazenamento em cache se refere ao conceito de armazenamento de dados acessados ​​com frequência de uma maneira que permite acesso de maior desempenho, em detrimento do possível enfraquecimento dos dados. Um caso de uso comum ocorre no desenvolvimento da Web ao obter dados de um banco de dados relacional baseado em disco e colocá-lo na memória. Quaisquer solicitações subsequentes para os dados não precisam "atingir o banco de dados" e, portanto, os ganhos de desempenho podem ser significativos.
Para situações de negociação, o armazenamento em cache pode ser extremamente benéfico. Por exemplo, o estado atual de um portfólio de estratégias pode ser armazenado em um cache até que seja reequilibrado, de modo que a lista não precise ser regenerada em cada loop do algoritmo de negociação. Essa regeneração provavelmente será uma operação alta de I / O de CPU ou disco.
No entanto, o armazenamento em cache não é isento de seus próprios problemas. A regeneração dos dados de cache de uma só vez, devido à natureza volátil do armazenamento em cache, pode colocar uma demanda significativa na infraestrutura. Outro problema é o empilhamento de cães, em que múltiplas gerações de uma nova cópia de cache são realizadas sob uma carga extremamente alta, o que leva a uma falha em cascata.
Alocação de memória dinâmica é uma operação cara na execução de software. Assim, é imperativo que os aplicativos de negociação de desempenho mais alto conheçam bem como a memória está sendo alocada e desalocada durante o fluxo do programa. Novos padrões de linguagem, como Java, C # e Python, executam a coleta automática de lixo, que se refere à desalocação da memória alocada dinamicamente quando os objetos saem do escopo.
A coleta de lixo é extremamente útil durante o desenvolvimento, pois reduz os erros e ajuda na legibilidade. No entanto, muitas vezes é sub-ótimo para certas estratégias de negociação de alta frequência. A coleta de lixo personalizada é geralmente desejada para esses casos. Em Java, por exemplo, ajustando o coletor de lixo e a configuração de heap, é possível obter alto desempenho para estratégias de HFT.
O C ++ não fornece um coletor de lixo nativo e, portanto, é necessário manipular toda alocação / desalocação de memória como parte da implementação de um objeto. Embora potencialmente sujeito a erros (potencialmente levando a ponteiros pendentes), é extremamente útil ter um controle refinado de como os objetos aparecem no heap para determinados aplicativos. Ao escolher um idioma, certifique-se de estudar como o coletor de lixo funciona e se ele pode ser modificado para otimizar um determinado caso de uso.
Muitas operações em sistemas de negociação algorítmica são passíveis de paralelização. Isto refere-se ao conceito de realizar múltiplas operações programáticas ao mesmo tempo, isto é, em "paralelo". Os chamados algoritmos "embarassingly parallel" incluem etapas que podem ser calculadas de forma totalmente independente de outras etapas. Certas operações estatísticas, como as simulações de Monte Carlo, são um bom exemplo de algoritmos embarassingly paralelos, pois cada sorteio aleatório e subseqüente operação de caminho podem ser computados sem o conhecimento de outros caminhos.
Outros algoritmos são apenas parcialmente paralelizáveis. Simulações de dinâmica de fluidos são um exemplo, onde o domínio de computação pode ser subdividido, mas, em última análise, esses domínios devem se comunicar entre si e, assim, as operações são parcialmente sequenciais. Os algoritmos paralelizáveis ​​estão sujeitos à Lei de Amdahl, que fornece um limite superior teórico para o aumento de desempenho de um algoritmo paralelizado quando sujeito a processos separados por $ N $ (por exemplo, em um núcleo ou encadeamento da CPU).
A paralelização tornou-se cada vez mais importante como um meio de otimização, uma vez que as velocidades de clock do processador estagnaram, pois os processadores mais recentes contêm muitos núcleos com os quais executar cálculos paralelos. O aumento do hardware gráfico do consumidor (predominantemente para videogames) levou ao desenvolvimento de Unidades de Processamento Gráfico (Graphical Processing Units - GPUs), que contêm centenas de "núcleos" para operações altamente concorrentes. Essas GPUs agora são muito acessíveis. Estruturas de alto nível, como o CUDA da Nvidia, levaram à adoção generalizada na academia e nas finanças.
Esse hardware GPU geralmente é adequado apenas para o aspecto de pesquisa de finanças quantitativas, enquanto outros hardwares mais especializados (incluindo Field-Programmable Gate Arrays - FPGAs) são usados ​​para (U) HFT. Atualmente, os idiomas mais modernos suportam um grau de simultaneidade / multithreading. Assim, é fácil otimizar um backtester, já que todos os cálculos são geralmente independentes dos demais.
O dimensionamento em engenharia de software e operações refere-se à capacidade do sistema de manipular cargas crescentes de forma consistente na forma de solicitações maiores, maior uso do processador e mais alocação de memória. No comércio algorítmico, uma estratégia é capaz de escalonar se puder aceitar maiores quantidades de capital e ainda produzir retornos consistentes. A pilha de tecnologia de negociação é dimensionada se puder suportar maiores volumes de negócios e maior latência, sem gargalos.
Embora os sistemas devam ser projetados para escalar, muitas vezes é difícil prever antecipadamente onde ocorrerá um gargalo. Registro, testes, criação de perfil e monitoramento rigorosos ajudarão muito a permitir que um sistema seja dimensionado. Os próprios idiomas são geralmente descritos como "não escaláveis". Isso geralmente é resultado de desinformação, e não de fatos concretos. É a pilha total de tecnologia que deve ser verificada para escalabilidade, não para o idioma. É claro que certas linguagens têm um desempenho maior do que outras em casos de uso específicos, mas uma linguagem nunca é "melhor" que outra em todos os sentidos.
Um meio de gerenciar a escala é separar as preocupações, como dito acima. De modo a introduzir ainda a capacidade de lidar com "picos" no sistema (isto é, volatilidade súbita que desencadeia uma série de operações), é útil criar uma "arquitectura de fila de mensagens". Isso significa simplesmente colocar um sistema de fila de mensagens entre os componentes para que os pedidos sejam "empilhados" se um determinado componente não puder processar muitas solicitações.
Em vez de solicitações serem perdidas, elas são simplesmente mantidas em uma pilha até que a mensagem seja manipulada. Isso é particularmente útil para enviar negociações para um mecanismo de execução. Se o motor estiver sofrendo sob latência pesada, ele fará o backup dos negócios. Uma fila entre o gerador de sinais de negociação e a API de execução aliviará esse problema às custas do escorregamento comercial em potencial. Um broker de fila de mensagens de software livre bem respeitado é o RabbitMQ.
Hardware e Sistemas Operacionais.
O hardware que executa sua estratégia pode ter um impacto significativo na lucratividade de seu algoritmo. Este não é um problema restrito a operadores de alta frequência. Uma má escolha em hardware e sistema operacional pode levar a uma falha da máquina ou reinicializar no momento mais inoportuno. Assim, é necessário considerar onde seu aplicativo irá residir. A escolha é geralmente entre uma máquina desktop pessoal, um servidor remoto, um provedor "nuvem" ou um servidor co-localizado em troca.
As máquinas desktop são simples de instalar e administrar, especialmente com sistemas operacionais mais novos e amigáveis ​​ao usuário, como o Windows 7/8, o Mac OSX e o Ubuntu. Sistemas de desktop possuem algumas desvantagens significativas, no entanto. O principal é que as versões dos sistemas operacionais projetados para máquinas de mesa provavelmente exigirão reinicializações / patches (e geralmente no pior dos casos!). Eles também usam mais recursos computacionais pela necessidade de uma interface gráfica de usuário (GUI).
Utilizar hardware em um ambiente doméstico (ou escritório local) pode levar a problemas de conectividade à Internet e de tempo de atividade. O principal benefício de um sistema de desktop é que a potência computacional significativa pode ser adquirida pela fração do custo de um servidor dedicado remoto (ou sistema baseado em nuvem) de velocidade comparável.
Um servidor dedicado ou uma máquina baseada em nuvem, embora frequentemente mais cara do que uma opção de desktop, permite uma infraestrutura de redundância mais significativa, como backups automáticos de dados, a capacidade de garantir mais tempo de atividade e monitoramento remoto. Eles são mais difíceis de administrar, pois exigem a capacidade de usar os recursos de login remoto do sistema operacional.
No Windows, isso geralmente é feito através do protocolo RDP (Remote Desktop Protocol) da GUI. Em sistemas baseados em Unix, a linha de comando Secure SHell (SSH) é usada. A infra-estrutura de servidor baseada em Unix é quase sempre baseada em linha de comando, o que imediatamente torna as ferramentas de programação baseadas em GUI (como MatLab ou Excel) inutilizáveis.
Um servidor co-localizado, como a frase é usada no mercado de capitais, é simplesmente um servidor dedicado que reside dentro de uma troca a fim de reduzir a latência do algoritmo de negociação. Isso é absolutamente necessário para certas estratégias de negociação de alta frequência, que dependem de baixa latência para gerar alfa.
O aspecto final da escolha de hardware e a escolha da linguagem de programação é a independência de plataforma. Existe a necessidade de o código ser executado em vários sistemas operacionais diferentes? O código foi projetado para ser executado em um tipo específico de arquitetura de processador, como o Intel x86 / x64 ou será possível executar em processadores RISC, como os fabricados pela ARM? Essas questões serão altamente dependentes da frequência e do tipo de estratégia que está sendo implementada.
Resiliência e Teste.
Uma das melhores maneiras de perder muito dinheiro em negociações algorítmicas é criar um sistema sem resiliência. Isso se refere à durabilidade do sistema quando sujeito a eventos raros, como falências de corretagem, volatilidade excessiva súbita, tempo de inatividade em toda a região para um provedor de servidor em nuvem ou a exclusão acidental de um banco de dados comercial inteiro. Anos de lucros podem ser eliminados em segundos com uma arquitetura mal projetada. É absolutamente essencial considerar problemas como depuração, teste, registro, backups, alta disponibilidade e monitoramento como componentes principais de seu sistema.
É provável que, em qualquer aplicação de negociação quantitativa personalizada razoavelmente complicada, pelo menos 50% do tempo de desenvolvimento seja gasto em depuração, teste e manutenção.
Quase todas as linguagens de programação vêm com um depurador associado ou possuem alternativas de terceiros bem respeitadas. Em essência, um depurador permite a execução de um programa com a inserção de pontos de interrupção arbitrários no caminho do código, que interrompem temporariamente a execução para investigar o estado do sistema. O principal benefício da depuração é que é possível investigar o comportamento do código antes de um ponto de falha conhecido.
A depuração é um componente essencial na caixa de ferramentas para analisar erros de programação. No entanto, eles são mais amplamente usados ​​em linguagens compiladas, como C ++ ou Java, já que linguagens interpretadas, como Python, são mais fáceis de depurar devido a menos instruções LOC e menos detalhadas. Apesar dessa tendência, o Python vem com o pdb, que é uma ferramenta sofisticada de depuração. O Microsoft Visual C ++ IDE possui extensos utilitários de depuração de GUI, enquanto para o programador Linux C ++ de linha de comando, existe o depurador gdb.
Testes em desenvolvimento de software referem-se ao processo de aplicar parâmetros e resultados conhecidos a funções, métodos e objetos específicos dentro de uma base de código, para simular comportamento e avaliar múltiplos caminhos de código, ajudando a garantir que um sistema se comporta como deveria. Um paradigma mais recente é conhecido como Test Driven Development (TDD), em que o código de teste é desenvolvido em relação a uma interface especificada sem implementação. Antes da conclusão da base de código real, todos os testes falharão. Como o código é escrito para "preencher os espaços em branco", os testes acabarão por passar, ponto em que o desenvolvimento deve cessar.
O TDD requer um design de especificação inicial extenso, bem como um grau saudável de disciplina, a fim de realizar com sucesso. Em C ++, o Boost fornece uma estrutura de teste de unidade. Em Java, a biblioteca JUnit existe para cumprir o mesmo propósito. O Python também possui o módulo unittest como parte da biblioteca padrão. Muitas outras linguagens possuem estruturas de teste de unidade e muitas vezes há várias opções.
Em um ambiente de produção, o registro sofisticado é absolutamente essencial. O registro refere-se ao processo de saída de mensagens, com vários graus de gravidade, em relação ao comportamento de execução de um sistema para um arquivo ou banco de dados simples. Os logs são uma "primeira linha de ataque" ao procurar um comportamento inesperado do tempo de execução do programa. Infelizmente, as deficiências de um sistema de extração de madeira tendem a ser descobertas após o fato! Como com os backups discutidos abaixo, um sistema de registro deve ser considerado antes de um sistema ser projetado.
Tanto o Microsoft Windows quanto o Linux vêm com um amplo recurso de registro do sistema, e as linguagens de programação tendem a ser fornecidas com bibliotecas de registro padrão que cobrem a maioria dos casos de uso. It is often wise to centralise logging information in order to analyse it at a later date, since it can often lead to ideas about improving performance or error reduction, which will almost certainly have a positive impact on your trading returns.
While logging of a system will provide information about what has transpired in the past, monitoring of an application will provide insight into what is happening right now . All aspects of the system should be considered for monitoring. System level metrics such as disk usage, available memory, network bandwidth and CPU usage provide basic load information.
Trading metrics such as abnormal prices/volume, sudden rapid drawdowns and account exposure for different sectors/markets should also be continuously monitored. Further, a threshold system should be instigated that provides notification when certain metrics are breached, elevating the notification method (email, SMS, automated phone call) depending upon the severity of the metric.
System monitoring is often the domain of the system administrator or operations manager. However, as a sole trading developer, these metrics must be established as part of the larger design. Many solutions for monitoring exist: proprietary, hosted and open source, which allow extensive customisation of metrics for a particular use case.
Backups and high availability should be prime concerns of a trading system. Consider the following two questions: 1) If an entire production database of market data and trading history was deleted (without backups) how would the research and execution algorithm be affected? 2) If the trading system suffers an outage for an extended period (with open positions) how would account equity and ongoing profitability be affected? The answers to both of these questions are often sobering!
It is imperative to put in place a system for backing up data and also for testing the restoration of such data. Many individuals do not test a restore strategy. If recovery from a crash has not been tested in a safe environment, what guarantees exist that restoration will be available at the worst possible moment?
Similarly, high availability needs to be "baked in from the start". Redundant infrastructure (even at additional expense) must always be considered, as the cost of downtime is likely to far outweigh the ongoing maintenance cost of such systems. I won't delve too deeply into this topic as it is a large area, but make sure it is one of the first considerations given to your trading system.
Choosing a Language.
Considerable detail has now been provided on the various factors that arise when developing a custom high-performance algorithmic trading system. The next stage is to discuss how programming languages are generally categorised.
Type Systems.
When choosing a language for a trading stack it is necessary to consider the type system . The languages which are of interest for algorithmic trading are either statically - or dynamically-typed . A statically-typed language performs checks of the types (e. g. integers, floats, custom classes etc) during the compilation process. Such languages include C++ and Java. A dynamically-typed language performs the majority of its type-checking at runtime. Such languages include Python, Perl and JavaScript.
For a highly numerical system such as an algorithmic trading engine, type-checking at compile time can be extremely beneficial, as it can eliminate many bugs that would otherwise lead to numerical errors. However, type-checking doesn't catch everything, and this is where exception handling comes in due to the necessity of having to handle unexpected operations. 'Dynamic' languages (i. e. those that are dynamically-typed) can often lead to run-time errors that would otherwise be caught with a compilation-time type-check. For this reason, the concept of TDD (see above) and unit testing arose which, when carried out correctly, often provides more safety than compile-time checking alone.
Another benefit of statically-typed languages is that the compiler is able to make many optimisations that are otherwise unavailable to the dynamically - typed language, simply because the type (and thus memory requirements) are known at compile-time. In fact, part of the inefficiency of many dynamically-typed languages stems from the fact that certain objects must be type-inspected at run-time and this carries a performance hit. Libraries for dynamic languages, such as NumPy/SciPy alleviate this issue due to enforcing a type within arrays.
Open Source or Proprietary?
One of the biggest choices available to an algorithmic trading developer is whether to use proprietary (commercial) or open source technologies. Existem vantagens e desvantagens para ambas as abordagens. It is necessary to consider how well a language is supported, the activity of the community surrounding a language, ease of installation and maintenance, quality of the documentation and any licensing/maintenance costs.
The Microsoft stack (including Visual C++, Visual C#) and MathWorks' MatLab are two of the larger proprietary choices for developing custom algorithmic trading software. Both tools have had significant "battle testing" in the financial space, with the former making up the predominant software stack for investment banking trading infrastructure and the latter being heavily used for quantitative trading research within investment funds.
Microsoft and MathWorks both provide extensive high quality documentation for their products. Further, the communities surrounding each tool are very large with active web forums for both. The software allows cohesive integration with multiple languages such as C++, C# and VB, as well as easy linkage to other Microsoft products such as the SQL Server database via LINQ. MatLab also has many plugins/libraries (some free, some commercial) for nearly any quantitative research domain.
There are also drawbacks. With either piece of software the costs are not insignificant for a lone trader (although Microsoft does provide entry-level version of Visual Studio for free). Microsoft tools "play well" with each other, but integrate less well with external code. Visual Studio must also be executed on Microsoft Windows, which is arguably far less performant than an equivalent Linux server which is optimally tuned.
MatLab also lacks a few key plugins such as a good wrapper around the Interactive Brokers API, one of the few brokers amenable to high-performance algorithmic trading. The main issue with proprietary products is the lack of availability of the source code. This means that if ultra performance is truly required, both of these tools will be far less attractive.
Open source tools have been industry grade for sometime. Much of the alternative asset space makes extensive use of open-source Linux, MySQL/PostgreSQL, Python, R, C++ and Java in high-performance production roles. However, they are far from restricted to this domain. Python and R, in particular, contain a wealth of extensive numerical libraries for performing nearly any type of data analysis imaginable, often at execution speeds comparable to compiled languages, with certain caveats.
The main benefit of using interpreted languages is the speed of development time. Python and R require far fewer lines of code (LOC) to achieve similar functionality, principally due to the extensive libraries. Further, they often allow interactive console based development, rapidly reducing the iterative development process.
Given that time as a developer is extremely valuable, and execution speed often less so (unless in the HFT space), it is worth giving extensive consideration to an open source technology stack. Python and R possess significant development communities and are extremely well supported, due to their popularity. Documentation is excellent and bugs (at least for core libraries) remain scarce.
Open source tools often suffer from a lack of a dedicated commercial support contract and run optimally on systems with less-forgiving user interfaces. A typical Linux server (such as Ubuntu) will often be fully command-line oriented. In addition, Python and R can be slow for certain execution tasks. There are mechanisms for integrating with C++ in order to improve execution speeds, but it requires some experience in multi-language programming.
While proprietary software is not immune from dependency/versioning issues it is far less common to have to deal with incorrect library versions in such environments. Open source operating systems such as Linux can be trickier to administer.
I will venture my personal opinion here and state that I build all of my trading tools with open source technologies. In particular I use: Ubuntu, MySQL, Python, C++ and R. The maturity, community size, ability to "dig deep" if problems occur and lower total cost ownership (TCO) far outweigh the simplicity of proprietary GUIs and easier installations. Having said that, Microsoft Visual Studio (especially for C++) is a fantastic Integrated Development Environment (IDE) which I would also highly recommend.
Batteries Included?
The header of this section refers to the "out of the box" capabilities of the language - what libraries does it contain and how good are they? This is where mature languages have an advantage over newer variants. C++, Java and Python all now possess extensive libraries for network programming, HTTP, operating system interaction, GUIs, regular expressions (regex), iteration and basic algorithms.
C++ is famed for its Standard Template Library (STL) which contains a wealth of high performance data structures and algorithms "for free". Python is known for being able to communicate with nearly any other type of system/protocol (especially the web), mostly through its own standard library. R has a wealth of statistical and econometric tools built in, while MatLab is extremely optimised for any numerical linear algebra code (which can be found in portfolio optimisation and derivatives pricing, for instance).
Outside of the standard libraries, C++ makes use of the Boost library, which fills in the "missing parts" of the standard library. In fact, many parts of Boost made it into the TR1 standard and subsequently are available in the C++11 spec, including native support for lambda expressions and concurrency.
Python has the high performance NumPy/SciPy/Pandas data analysis library combination, which has gained widespread acceptance for algorithmic trading research. Further, high-performance plugins exist for access to the main relational databases, such as MySQL++ (MySQL/C++), JDBC (Java/MatLab), MySQLdb (MySQL/Python) and psychopg2 (PostgreSQL/Python). Python can even communicate with R via the RPy plugin!
An often overlooked aspect of a trading system while in the initial research and design stage is the connectivity to a broker API. Most APIs natively support C++ and Java, but some also support C# and Python, either directly or with community-provided wrapper code to the C++ APIs. In particular, Interactive Brokers can be connected to via the IBPy plugin. If high-performance is required, brokerages will support the FIX protocol.
Conclusão.
As is now evident, the choice of programming language(s) for an algorithmic trading system is not straightforward and requires deep thought. The main considerations are performance, ease of development, resiliency and testing, separation of concerns, familiarity, maintenance, source code availability, licensing costs and maturity of libraries.
The benefit of a separated architecture is that it allows languages to be "plugged in" for different aspects of a trading stack, as and when requirements change. A trading system is an evolving tool and it is likely that any language choices will evolve along with it.
A Quantcademy.
Participe do portal de associação da Quantcademy que atende à crescente comunidade de traders de quantificação de varejo e aprenda como aumentar a lucratividade de sua estratégia.
Negociação Algorítmica Bem Sucedida.
Como encontrar novas ideias de estratégia de negociação e avaliá-las objetivamente para o seu portfólio usando um mecanismo de backtesting personalizado no Python.
Comércio Algorítmico Avançado.
Como implementar estratégias de negociação avançadas usando análise de séries temporais, aprendizado de máquina e estatísticas Bayesianas com R e Python.

Codificação de Sistemas de Negociação.
Por Justin Kuepper.
Como os sistemas de negociação automatizados são criados?
Este tutorial se concentrará na segunda e na terceira partes deste processo, onde suas regras são convertidas em um código que seu software de negociação pode entender e usar.
Vantagens e desvantagens.
Um sistema automatizado tira a emoção e o trabalho ocupado da negociação, o que permite que você se concentre em melhorar suas regras de estratégia e gerenciamento de dinheiro. Uma vez que um sistema lucrativo é desenvolvido, ele não requer nenhum trabalho de sua parte até que ele quebre, ou as condições do mercado exigem uma mudança. Desvantagens:
Se o sistema não for devidamente codificado e testado, grandes perdas podem ocorrer muito rapidamente. Às vezes é impossível colocar certas regras no código, o que dificulta o desenvolvimento de um sistema de negociação automatizado. Neste tutorial, você aprenderá como planejar e projetar um sistema de negociação automatizado, como converter esse design em código que seu computador entenderá, como testar seu plano para garantir um desempenho ideal e, finalmente, como colocar seu sistema em uso.

Comments